537 research outputs found

    High Spectral Purity, Narrow Linewidth Laser Transmitter for Dial Measurements

    Get PDF
    A laser transmission with very high degree of spectral purity was described. Amplified Spontaneous Emission (ASE) dependence on the oscillator energy and the detuning away from the gain curve center are demonstrated. The effects of both finite laser linewidth and spectral purity on humidity measurements are experimentally demonstrated

    Alexandrite laser source for atmospheric lidar measurements

    Get PDF
    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized

    Remote sensing of cirrus clouds and aerosols by a sun photometer in Tunisia

    Get PDF
    International audienceSome ground based measurements of solar radiation by using a sun photometer, have been conducted in Tunisia during the period of November 2000–February 2002. Five key measurement sites were selected: Three Sites (Tunis, Sousse, Gabes) are located on the Mediterranean coast and Two sites (Gafsa, Tozeur) on the boarder of Sahara. Over a total of 149 measurement days, 21 days are identified as clear sky, 114 days as Cirrus clouds and 14 days as aerosols. Aerosols and Cirrus clouds Optical Thickness (AOT) are derived from photometric measurements at 532 nm wavelength. Spatial and temporal variabilities of AOT are presented and discussed in this paper. Cirrus clouds were frequently observed at Gafsa and Tozeur where saharan aerosol events are expected to be more frequent than cirrus clouds. The mediterranean sea and saharan aerosols are suspected to have the main role in cirrus clouds formation, by providing water vapor and high concentrations of cloud condensation and ice forming nuclei

    Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad

    Get PDF
    The Bodélé Depression, Chad is the planet's largest single source of dust. Deflation from the Bodélé could be seen as a simple coincidence of two key prerequisites: strong surface winds and a large source of suitable sediment. But here we hypothesise that long term links between topography, winds, deflation and dust ensure the maintenance of the dust source such that these two apparently coincidental key ingredients are connected by land-atmosphere processes with topography acting as the overall controlling agent. We use a variety of observational and numerical techniques, including a regional climate model, to show that: 1) contemporary deflation from the Bodélé is delineated by topography and a surface wind stress maximum; 2) the Tibesti and Ennedi mountains play a key role in the generation of the erosive winds in the form of the Bodélé Low Level Jet (LLJ); 3) enhanced deflation from a stronger Bodélé LLJ during drier phases, for example, the Last Glacial Maximum, was probably sufficient to create the shallow lake in which diatoms lived during wetter phases, such as the Holocene pluvial. Winds may therefore have helped to create the depression in which erodible diatom material accumulated. Instead of a simple coincidence of nature, dust from the world's largest source may result from the operation of long term processes on paleo timescales which have led to ideal conditions for dust generation in the world's largest dust source. Similar processes plausibly operate in other dust hotspots in topographic depressions

    Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Get PDF
    International audienceThe radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP). We focus on two days (13 and 14 June 2006) of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau) and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS) and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1) was also observed locally in some limited part of the dust plumes. The uncertainty on the heating rate retrievals in the optically thickest part of the dust plume was estimated to be between 0.5 and 1.4 K day−1. During nighttime much smaller values of heating/cooling are retrieved (less than ±1 K day−1). Furthermore, cooling is observed as the result of the longwave forcing in the dust layer, while warming is observed below the dust layer, in the monsoon layer

    Lagrangian dust model simulations for a case of moist convective dust emission and transport in the western Sahara region during Fennec/LADUNEX

    Get PDF
    Due to the harshness and inaccessibility of desert regions, the uncertainties concerning the processes of dust mobilization at the surface, airborne transport, and sedimentation are still considerable, limiting the ability to perform model simulations. In June 2011, a comprehensive data set of ground-based and airborne in situ measurements and remote sensing observations was acquired within the Fennec/Lagrangian Dust Source Inversion Experiment (LADUNEX) field campaign in the western Sahara region. Here we evaluate the ability of the state-of-the-art Lagrangian particle dispersion model FLEXPART, newly fitted with a dust mobilization capability, to simulate dust transport in this region. We investigate a case where a large mesoscale convective system (MCS) triggered dust emissions in central Mali, which subsequently moved as a large cold pool dust front toward northern Mauritania. Specifying dust mobilization for this case is shown to be an important obstacle to simulating dust transport during this event, since neither the MCS nor the associated cold pool-causing dust emission is represented in the meteorological analysis. Obtaining a realistic dust transport simulation for this case therefore requires an inversion approach using a manual specification of the dust sources supported by satellite imagery. When compared to in situ and remote sensing data from two aircraft, the Lagrangian dust transport simulations represent the overall shape and evolution of the dust plume well. While accumulation and coarse mode dust are well represented in the simulation, giant mode particles are considerably underestimated. Our results re-emphasize that dust emission associated with deep moist convection remains a key issue for reliable dust model simulations in northern Africa

    Longitudinal Bone Loss Occurs at the Radius in CKD.

    Get PDF
    Chronic kidney disease (CKD) exposes to an increased incidence of fragility fractures. International guidelines recommend performing bone mineral density (BMD) if the results will impact treatment decisions. It remains unknown where bone loss occurs and what would preclude the longitudinal loss in patients with CKD. Here, we aimed to investigate factors influencing BMD and to analyze the longitudinal BMD changes. In the NephroTest cohort, we measured BMD at the femoral neck, total hip, lumbar spine, and proximal radius, together with circulating biomarkers and standardized measured glomerular filtration rate (mGFR) by <sup>51</sup> Cr-EDTA in a subset of patients with CKD stage 1 to 5 followed during 4.3 ± 2.0 years. A linear mixed model explored the longitudinal bone loss and the relationship of associated factors with BMD changes. A total of 858 patients (mean age 58.9 ± 15.2 years) had at least 1 and 477 had at least 2 BMD measures. At baseline, cross-sectional analysis showed a significantly lower BMD at femoral neck and total hip and a significant higher serum parathyroid hormone (PTH) along with CKD stages. Baseline age, gender, tobacco, low body mass index (BMI), and high PTH levels were significantly associated with low BMD. Longitudinal analysis during the mean 4.3 years revealed a significant bone loss at the radius only. BMD changes at the femoral neck were associated with BMI, but not CKD stages or basal PTH levels. CKD is associated with low BMD and high PTH in the cross-sectional analysis. Longitudinal bone loss occurred at the proximal radius after 4.3 years

    Pressure Measurements Using an Airborne Differential Absorption Lidar

    Get PDF
    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines

    Turbulent forcing of gravity waves during the morning transition of the Atmospheric Boundary Layer: analogy with water-tank experiments

    Get PDF
    In a series of atmospheric observations during the morning transition of the Atmospheric Boundary Layer (ABL), internal gravity waves were observed to propagate in the atmospheric Residual Layer. This requires an energy source for the waves and a stably stratified Residual Layer, which is usually though to be neutral. To understand these observations in a simplified and controlled environment, a series of laboratory experiments was carried out to examine the properties of internal gravity waves generated by a turbulent region and transmitted through a salt-stratified system similar to the atmospheric stratification during the transition. The turbulence was generated by an oscillating grid and analyzed using PIV technique to obtain the characteristic velocity U_t and lengthscale L_t of the energy containing eddies. The waves in the stratified layers were visualized using shadowgraph technique
    corecore